92 research outputs found

    Genetic determinants of white matter integrity in bipolar disorder

    Get PDF
    Bipolar disorder is a heritable psychiatric disorder, and several of the genes associated with bipolar disorder and related psychotic disorders are involved in the development and maintenance of white matter in the brain. Patients with bipolar disorder have an increased incidence of white matter hyper-intensities, and quantitative brain imaging studies collectively indicate subtle decreases in white matter density and integrity in bipolar patients. This suggests that genetic vulnerability to psychosis may manifest itself as reduced white matter integrity, and that white matter integrity is an endophenotype of bipolar disorder. This thesis comprises a series of studies designed to test the role of white matter in genetic risk to bipolar disorder by analysis of diffusion tensor imaging (DTI) data in the Bipolar Family Study. Various established analysis methods for DTI, including whole-brain voxel-based statistics, tract-based spatial statistics (TBSS) and probabilistic neighbourhood tractography, were applied with fractional anisotropy (FA) as the outcome measure. Widespread but subtle white matter integrity reductions were found in unaffected relatives of patients with bipolar disorder, whilst more localised reductions were associated with cyclothymic temperament. Next, the relation of white matter to four of the most prominent psychosis candidate genes, NRG1, ErbB4, DISC1 and ZNF804A, was investigated. A core haplotype in NRG1, and three of the four key single nucleotide polymorphisms (SNPs) within it, showed an association with FA in the anterior thalamic radiations and the uncinate fasciculi. For the three SNPs considered in ErbB4, results were inconclusive, but this was consistent with the background literature. Most notable however, was a clear association of a non-synonymous DISC1 SNP, Ser704Cys, with FA extending over most of the white matter in the TBSS and voxel-based analyses. Finally, FA was not associated with a genome-wide supported risk SNP in ZNF804A, a finding which could not be attributed to a lack of statistical power, and which contradicts a strong, but previously untested hypothesis. Whilst the above results need corroboration from independent studies, other studies are needed to address the cellular and molecular basis of these findings. Overall, this work provides strong support for the role of white matter integrity in genetic vulnerability to bipolar disorder and the wider psychosis spectrum and encourages its future use as an endophenotype

    Multimodal Neuroimaging-Informed Clinical Applications in Neuropsychiatric Disorders

    Get PDF
    Recent advances in neuroimaging data acquisition and analysis hold the promise to enhance the ability to make diagnostic and prognostic predictions and perform treatment planning in neuropsychiatric disorders. Prior research using a variety of types of neuroimaging techniques has confirmed that neuropsychiatric disorders are associated with dysfunction in anatomical and functional brain circuits. We first discuss current challenges associated with the identification of reliable neuroimaging markers for diagnosis and prognosis in mood disorders and for neurosurgical treatment planning for deep brain stimulation (DBS). We then present data on the use of neuroimaging for the diagnosis and prognosis of mood disorders and for DBS treatment planning. We demonstrate how multivariate analyses of functional activation and connectivity parameters can be used to differentiate patients with bipolar disorder from those with major depressive disorder and non-affective psychosis. We also present data on connectivity parameters that mediate acute treatment response in affective and non-affective psychosis. We then focus on precision mapping of functional connectivity in native space. We describe the benefits of integrating anatomical fiber reconstruction with brain functional parameters and cortical surface measures to derive anatomically-informed connectivity metrics within the morphological context of each individual brain. We discuss how this approach may be particularly promising in psychiatry, given the clinical and etiological heterogeneity of the disorders, and particularly in treatment response prediction and planning. Precision mapping of connectivity is essential for DBS. In DBS, treatment electrodes are inserted into positions near key grey matter nodes within the circuits considered relevant to disease expression. However, targeting white matter tracts that underpin connectivity within these circuits may increase treatment efficacy and tolerability therefore relevant for effective treatment. We demonstrate how this approach can be validated in the treatment of Parkinson’s disease by identifying connectivity patterns that can be used as biomarkers for treatment planning and thus refine the traditional approach of DBS planning that uses only grey matter landmarks. Finally we describe how this approach could be used in planning DBS treatment of psychiatric disorders

    Epigenetic Age Acceleration Assessed with Human White-Matter Images

    Get PDF
    The accurate estimation of age using methylation data has proved a useful and heritable biomarker, with acceleration in epigenetic age predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are also heritable and highly sensitive to both normal and pathological aging processes across adulthood. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity in humans. Our goal was to investigate processes that underlie interindividual variability in age-related changes in the brain. Using blood taken from a Mexican-American extended pedigree sample (n = 628; age = 23.28-93.11 years), epigenetic age was estimated using the method developed by Horvath (2013). For n = 376 individuals, diffusion tensor imaging scans were also available. The interrelationship between epigenetic age acceleration and global white matter integrity was investigated with variance decomposition methods. To test for neuroanatomical specificity, 16 specific tracts were additionally considered. We observed negative phenotypic correlations between epigenetic age acceleration and global white matter tract integrity (ρpheno = -0.119, p = 0.028), with evidence of shared genetic (ρgene = -0.463, p = 0.013) but not environmental influences. Negative phenotypic and genetic correlations with age acceleration were also seen for a number of specific white matter tracts, along with additional negative phenotypic correlations between granulocyte abundance and white matter integrity. These findings (i.e., increased acceleration in epigenetic age in peripheral blood correlates with reduced white matter integrity in the brain and shares common genetic influences) provide a window into the neurobiology of aging processes within the brain and a potential biomarker of normal and pathological brain aging

    Task-generic and task-specific connectivity modulations in the ADHD brain:an integrated analysis across multiple tasks

    Get PDF
    Contains fulltext : 231786.pdf (publisher's version ) (Open Access)Attention-deficit/hyperactivity disorder (ADHD) is associated with altered functioning in multiple cognitive domains and neural networks. This paper offers an overarching biological perspective across these. We applied a novel strategy that extracts functional connectivity modulations in the brain across one (P(single)), two (P(mix)) or three (P(all)) cognitive tasks and compared the pattern of modulations between participants with ADHD (n-89), unaffected siblings (n = 93) and controls (n = 84; total N = 266; age range = 8-27 years). Participants with ADHD had significantly fewer P(all) connections (modulated regardless of task), but significantly more task-specific (P(single)) connectivity modulations than the other groups. The amplitude of these P(single) modulations was significantly higher in ADHD. Unaffected siblings showed a similar degree of P(all) connectivity modulation as controls but a similar degree of P(single) connectivity modulation as ADHD probands. P(all) connections were strongly reproducible at the individual level in controls, but showed marked heterogeneity in both participants with ADHD and unaffected siblings. The pattern of reduced task-generic and increased task-specific connectivity modulations in ADHD may be interpreted as reflecting a less efficient functional brain architecture due to a reduction in the ability to generalise processing pathways across multiple cognitive domains. The higher amplitude of unique task-specific connectivity modulations in ADHD may index a more "effortful" coping strategy. Unaffected siblings displayed a task connectivity profile in between that of controls and ADHD probands, supporting an endophenotype view. Our approach provides a new perspective on the core neural underpinnings of ADHD

    Structural and Functional Reorganization of the Brain in Migraine Without Aura

    Get PDF
    It remains unknown whether migraine headache has a progressive component in its pathophysiology. Quantitative MRI may provide valuable insight into abnormal changes in the migraine interictum and assist in identifying disrupted brain networks. We carried out a data-driven study of structural integrity and functional connectivity of the resting brain in migraine without aura. MRI scanning was performed in 36 patients suffering from episodic migraine without aura and 33 age-matched healthy subjects. Voxel-wise analysis of regional brain volume was performed by registration of the T1-weighted MRI scans into a common study brain template using the tensor-based morphometry (TBM) method. Changes in functional synchronicity of the brain networks were assessed using probabilistic independent component analysis (ICA). TBM revealed that migraine is associated with reduced volume of the medial prefrontal cortex (mPFC). Among 375 functional brain networks, resting-state connectivity was decreased between two components spanning the visual cortex, posterior insula, and parietal somatosensory cortex. Our study reveals structural and functional alterations of the brain in the migraine interictum that may stem from underlying disease risk factors and the “silent” aura phenomenon. Longitudinal studies will be needed to investigate whether interictal brain changes are progressive and associated with clinical disease trajectories

    Shared genetic variance between obesity and white matter integrity in Mexican Americans.

    Get PDF
    peer reviewedObesity is a chronic metabolic disorder that may also lead to reduced white matter integrity, potentially due to shared genetic risk factors. Genetic correlation analyses were conducted in a large cohort of Mexican American families in San Antonio (N = 761, 58% females, ages 18-81 years; 41.3 +/- 14.5) from the Genetics of Brain Structure and Function Study. Shared genetic variance was calculated between measures of adiposity [(body mass index (BMI; kg/m(2)) and waist circumference (WC; in)] and whole-brain and regional measurements of cerebral white matter integrity (fractional anisotropy). Whole-brain average and regional fractional anisotropy values for 10 major white matter tracts were calculated from high angular resolution diffusion tensor imaging data (DTI; 1.7 x 1.7 x 3 mm; 55 directions). Additive genetic factors explained intersubject variance in BMI (heritability, h (2) = 0.58), WC (h (2) = 0.57), and FA (h (2) = 0.49). FA shared significant portions of genetic variance with BMI in the genu (rhoG = -0.25), body (rhoG = -0.30), and splenium (rhoG = -0.26) of the corpus callosum, internal capsule (rhoG = -0.29), and thalamic radiation (rhoG = -0.31) (all p's = 0.043). The strongest evidence of shared variance was between BMI/WC and FA in the superior fronto-occipital fasciculus (rhoG = -0.39, p = 0.020; rhoG = -0.39, p = 0.030), which highlights region-specific variation in neural correlates of obesity. This may suggest that increase in obesity and reduced white matter integrity share common genetic risk factors

    Reduced fronto-striatal volume in attention-deficit/hyperactivity disorder in two cohorts across the lifespan

    Get PDF
    Attention-Deficit/Hyperactivity Disorder (ADHD) has been associated with altered brain anatomy in neuroimaging studies. However, small and heterogeneous study samples, and the use of region-of-interest and tissuespecific analyses have limited the consistency and replicability of these effects. We used a data-driven multivariate approach to investigate neuroanatomical features associated with ADHD in two independent cohorts: the Dutch NeuroIMAGE cohort (n = 890, 17.2 years) and the Brazilian IMpACT cohort (n = 180, 44.2 years). Using independent component analysis of whole-brain morphometry images, 375 neuroanatomical components were assessed for association with ADHD. In both discovery (corrected-p = 0.0085) and replication (p = 0.032) cohorts, ADHD was associated with reduced volume in frontal lobes, striatum, and their interconnecting whitematter. Current results provide further evidence for the role of the fronto-striatal circuit in ADHD in children, and for the first time show its relevance to ADHD in adults. The fact that the cohorts are from different continents and comprise different age ranges highlights the robustness of the findings

    Multi-site genetic analysis of diffusion images and voxelwise heritability analysis : a pilot project of the ENIGMA–DTI working group

    Get PDF
    The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/)

    Discrepancies of polygenic effects on symptom dimensions between adolescents and adults with ADHD

    Get PDF
    A significant proportion of individuals with attention-deficit/hyperactivity disorder (ADHD) show persistence into adulthood. The genetic and neural correlates of ADHD in adolescents versus adults remain poorly characterized. We investigated ADHD polygenic risk score (PRS) in relation to previously identified gray matter (GM) patterns, neurocognitive, and symptom findings in the same ADHD sample (462 adolescents & 422 adults from the NeuroIMAGE and IMpACT cohorts). Significant effects of ADHD PRS were found on hyperactivity and impulsivity symptoms in adolescents, hyperactivity symptom in adults, but not GM volume components. A distinct PRS effect between adolescents and adults on individual ADHD symptoms is suggested
    corecore